A dynamic microfluidic culture model of the female reproductive tract

<u>Nazanin Razzaghi¹*</u>, Melati S. Abdul Halim¹, Fatemeh Amjad¹, Shireen Parsamanesh¹, Luk Rombauts^{2,3}, Max M. Gong⁴, Jennifer M. Dyson¹, and Reza Nosrati¹

¹ Monash University, Department of Mechanical and Aerospace Engineering, Clayton, Victoria 3800, Australia

² Monash IVF, Clayton, Victoria 3168, Australia

³ Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3800, Australia

⁴ Department of Biomedical Engineering, Trine University, Angola, IN, USA

Nazanin.Razzaghi@monash.edu

The Fallopian tube epithelium plays a critical role in human fertility by facilitating gamete transport, fertilization, and early embryo development¹. The cooperative activity of ciliated and secretory epithelial cells is essential for maintaining luminal homeostasis². This balance is dynamically regulated by both mechanical and hormonal cues³. However, the role of the dynamic tubal flow environment in regulating epithelial cell behaviour, and the mechanotransduction pathways underlying their responses, remain largely undefined. Here, we present a microfluidic model that mimics the native flow microenvironment of the Fallopian tube to examine how physiological shear regulates epithelial differentiation. Primary epithelial cells were cultured in a dual-channel PDMS device under static and dynamic flow conditions mimicking *in vivo* shear rates. Cellular responses were evaluated for ciliogenesis (acetylated α -tubulin, FOXJ1) and secretory activity (OVGP1). Our findings demonstrate that fluid shear promotes cilia formation by up to 3-fold and enhances OVGP1 secretion, suggesting shear-induced functional maturation of both ciliated and secretory epithelial cells. This dynamic microfluidic culture model offers a valuable platform for advancing our understanding of reproductive tract biology.

References:

² Abdul Halim, M.S.; Dyson, J. M.; Gong, M.; et al. Nat. Commun. **2024**, 15(1), 7411.

¹Dinh, H.Q.; Lin, X.; Abbasi, F.; et al. Cell Rep. **2021**, 35(2), 108978.

³Weigert, M.; Li, Y.; Zhu, L.; et al. Nat. Commun. **2025**, 16(1), 372.