Confinement induces drug resistance in breast cancer

<u>B.G. Soliman</u>, P. Tian, S. Romanazzo, R.R. Liang, E. Spargo, Kristopher A. Kilian*, J. Justin Gooding*

Material and Science Engineering (Hilmer) Building (E10), Gate 2, High Street University of New South Wales Sydney, New South Wales, Australia *b.soliman@unsw.edu.au, k.kilian@unsw.edu.au, justin.gooding@unsw.edu.au*

Introduction: During breast cancer progression, confinement imposed by the interface of the mammary gland lumen and its surrounding extracellular matrix is thought to be a key driver of cancer heterogeneity and drug resistance^{1,2}. Herein, drop-on-demand printing³ is exploited to meet the challenge of mimicking this complex interface within an *in vitro* setting to explore the role for confinement in driving breast cancer heterogeneity and drug resistance.

Materials and Methods: Alginate (1.5-3 %w/v) and CaCl₂ (2-4 %w/v) were co-printed through drop-on-demand printing (Rastrum, Inventia) to generate bioinert cup-shaped hydrogels with tailorable stiffness as determined through compression testing (MCR301, Anton Paar). MCF7 cells grow to conform to the cup cavities (≤ 10 days) to generate confined spheroids with well-defined shape (Fig. 1A). Unconfined spheroids were prepared using ultralow attachment plates. Cell survival (CellTiter-Glo®) was measured in response to cytotoxic drugs (doxorubicin, 0-120 μ M). Drug resistance markers (CD44, CD133) were probed through immunofluorescence staining and imaged using confocal microscopy (LSM800, Zeiss).

Results and Discussion: Drop-on-demand printing allowed fabrication of cups with circular cavities that enabled the growth of confined spheroids with similar dimensions as unconfined spheroids (0.49 ± 0.04 versus 0.56 ± 0.06 mm² area and 0.47 ± 0.04 *10⁶ versus 0.48 ± 0.06 *10⁶ cells). Confinement could thus be studied through a direct comparison between confined and unconfined spheroids, wherein confined spheroids demonstrated higher drug resistance than unconfined spheroids (IC₅₀: 16.3 ± 1.9 and 7.7 ± 2.3 µM, Fig. 1B). Concomitantly, confinement drove the emergence of drug resistant (CD44^{high}, CD133^{high}) populations at the confined spheroid's edges (Fig. 1C). It was hypothesized that interfacial stress caused by cup's physical confinement caused emergence of these drug-resistant populations. To verify this hypothesis, cup stiffness was varied to tune the interfacial stress of confinement (5.5 ± 1.1 , 9.9 ± 4.9 and 18.5 ± 3.9 kPa), which resulted in an increase in expression of drug resistance molecular markers with a concurrent increase in IC₅₀ values (2.4 ± 1.3 , 3.8 ± 1.7 and 10.5 ± 2.5 µM), supporting a "*interfacial stress—stemness—drug resistance*" relationship.

Conclusions: The direct comparison of confined and unconfined spheroids, uniquely enabled by the drop-on-demand printing platform, revealed the importance of confinement and the extracellular matrix in breast cancer models, for the study and treatment of cancer heterogeneity and drug resistance.

Figure 1: Drop-on-demand printing (A) enabling a direct comparison between confined and unconfined spheroids to reveal (B) interfacial stress-driven emergence of drug resistance in breast cancer (C). References:

¹ Kalli, M.; Stylianopoulos, T. *Frontiers in Oncology* **2018**, *8*, 55. ² Lee J.; Kilian, A.A.; et al. *Nature Materials* **2016**, *15*, 856. ³ Utama, R.H.; Gooding, J.J..; et al. *iScience* **2020**, *23*, 101621.