
Atomic Vacancy Rich Molybdenum Disulfide Nanoparticles Stimulate Mitochondrial Biogenesis and Enhance Oxidative Phosphorylation

<u>Kanwar Abhay Singh^{1,5}</u>, John Soukar², Mohammad Zulkifli⁴, Irtisha Singh^{1,2,3}, Vishal Gohil^{2,4}, Akhilesh K Gaharwar^{1,2,3 *}

¹Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA ²Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA ³Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA ⁴Biochemistry and Biophysical, Texas A&M University, College Station, TX 77843, USA ⁵Department of Chemistry, University of New South Wales, Sydney, NSW 2033, Australia *abhav.singh@unsw.edu.au*, *gaharwar@tamu.edu*

Reduced mitochondrial function is the basis of many rare congenital diseases of energy metabolism and contributes to most common age-associated metabolic and neurodegenerative disorders. Therefore, boosting mitochondrial biogenesis is an intriguing therapeutic approach for these diseases; however, currently there exists a limited repertoire of compounds that can stimulate mitochondrial function. To address this, we designed molybdenum disulfide (MoS₂) nanoflowers with predefined atomic vacancies that are fabricated by self-assembly of individual two-dimensional MoS₂ nanosheets. The treatment of mammalian cells with MoS₂ nanoflowers increased mitochondrial biogenesis by induction of PGC-1 α and TFAM, which resulted in increased mitochondrial DNA copy number, enhanced expression of nuclear and mitochondrial-DNA encoded genes, and increased levels of mitochondrial respiratory chain proteins. Consistent with increased mitochondrial biogenesis, treatment with MoS₂ nanoflowers enhanced mitochondrial respiratory capacity and adenosine triphosphate production in multiple mammalian cell types. Taken together, this study reveals that predefined atomic vacancies in MoS₂ nanoflowers stimulate mitochondrial function by upregulating the expression of genes required for mitochondrial biogenesis.

Figure 1: (A) Proposed mechanism of action by which vacancy rich MoS_2 (MoS_2 (1:6)) enhance mitochondrial biogenesis. **(B)** A significant increase in mt-DNA encoded transcript (*mt-ND2*), was observed in cells following MoS_2 treatment, indicating increased mitochondrial biogenesis. **(C)** Western blotting is used to determine the relative expression of key mitochondrial proteins, with MoS_2 (1:6) treatment resulting in a significant upregulation these proteins. **(D)** The effect of MoS_2 on oxygen consumption rate (OCR) was determined in C2C12 cells treated with different concentrations of MoS_2 (1:6) (0, 10 and $25 \mu g/mL$). Treated cells exhibited an increase in the maximum respiratory capacity.

References:

Singh, Kanwar Abhay, et al. "Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis." *Nature Communications* 15.1 (2024): 8136.