Haemoglobin-Based O₂ Carriers Designed for Use as a Red Blood Cell Substitute

Teruyuki Komatsu*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan *komatsu@kc.chuo-u.ac.jp*

Modern medicine requires an adequate blood supply for transfusion. Nevertheless, declining birth rate and aging population are reducing the number of blood donors, resulting in a shortage of blood worldwide. In particular, red blood cell (RBC) substitute is necessary for a medical measure to compliment transfusion therapy. In the last few decades, haemoglobin (Hb)-based O₂ carriers (HBOCs) of several kinds have been developed as RBC alternatives.¹ However, none has been assigned yet for practical use because of several concerns.

We have recently synthesized various HBOCs and have evaluated their O₂ binding properties, safety, and efficacy. First, Hb was wrapped covalently with human serum albumins (HSAs), yielding Hb-HSA₃ cluster.^{2,3} The AFM observation and 3D reconstruction based on cryo-TEM images revealed a triangular structure.^{2,4} Hb-HSA₃ showed higher O₂-affinity than that of native Hb.⁵ Various clusters containing a recombinant Hb mutant core which possesses different O₂ affinities have also been created.^{6,7} Intravenous administration of Hb-HSA₃ into anesthetized rats did not elicit unfavourable side-effects, such as an increase in systemic blood pressure.⁸ Physiological responses to the transfusion in acute anaemia rat model (50% blood withdrawal) demonstrated that Hb-HSA₃ has an ability to resuscitate the haemorrhagic shock.⁹ These results suggest that the Hb-HSA₃ solution can be of medical importance for alternative material of RBC transfusion.

Second, we prepared core-shell structured Hb nanoparticle (HbNP).¹⁰ Covalently binding of HSA to sphere composed of polymerized Hbs yielded HbNP. The diameter was ascertained as approximately 90 nm by SEM. The similar particle made of stroma-free Hb (SFHb) containing natural antioxidant enzyme catalase (SFHbNP) formed a very stable O_2 complex even in aqueous H_2O_2 solution. The SFHbNP possessed good blood compatibility and did not affect the functionalities of the blood cell components.

Polyethylene glycol (PEG)-conjugated Hbs have been widely developed.¹¹ Nonetheless, administration of PEG-conjugated proteins has been recently shown that anti-PEG antibodies generate in the body. Poly(2-ethyl-2-oxazoline) (POx) is a potential alternative for PEG. Third, we prepared POx-conjugated Hbs (POx-Hb) for both human and veterinary use.¹²

References:

- ¹ Gupta, A. S. *Shock* **2019**, *52*, 70–83.
- ² Tomita, D.; Komatsu, T. et al., *Biomacromolecules* **2013**, *14*, 1816–1825.
- ³ Funaki, R.; Komatsu, T. et al., ACS Omega 2019, 4, 3228–3233.
- ⁴ Shinohara, R.; Komatsu, T. et al., J. Phys. Chem. Lett. 2017, 8, 819–824.
- ⁵ Morita, Y.; Komatsu, T. et al., J. Phys. Chem. B 2018, 122, 12031–12039.
- ⁶ Funaki, R.; Komatsu, T. et al., J. Mater. Chem. B 2020, 8, 1139–1145.
- ⁷ Morita, Y.; Komatsu, T. et al., Chem. Commun. 2021, 57, 9144–9147.
- ⁸ Iwasaki, H.; Komatsu, T. et al., Art. Cells Nanomed. Bitechnol. 2018, 46, S621–S629.
- ⁹ Okamoto, W.; Komatsu, T. et al., J. Biomed. Mater. Res. 2022, 110, 1827–1838.
- ¹⁰ Okamoto, W.; Komatsu, T. et al., ACS Appl. Bio Mater. 2022, 5, 5844–5853.
- ¹¹ Portörő, I. et al., *Biochim. Biophys. Acta* **2008**, *1784*, 1402–1409.
- ¹² Okamoto, W.; Komatsu, T. et al., **2023**, submitted.