Viral Photodynamic Therapy in Tumor Microenvironment

Zi-Xian Liaoa, Pan-Chyr Yangb, Ivan M. Kempsonc*

aInstitute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
bDepartment of Internal Medicine National Taiwan University College of Medicine, Taipei 10051, Taiwan
cFuture Industries Institute, University of South Australia, Mawson Lakes, S.A. 5095, Australia

Presenting and Corresponding Author E-mail Address: ivan.kempson@unisa.edu.au

Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells.1 The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death and damage. Moreover, clinical studies revealed that PDT can be curative particularly in early-stage tumors. However, the major challenge of PDT has a lack of selectivity and efficacy of photosensitizers. The genetically-encoded red fluorescent protein (KillerRed) leads to irreversible DNA damage and cell killing via an apoptotic pathway upon irradiation with a narrow light bandwidth of 520–590 nm due to formation of highly-cytotoxic levels of ROS.2 Additionally, the US Food and Drug Administration (FDA) has approved virotherapy for use in cancer treatment.3 We present an improved technique that switches to promote cellular uptake and delivery of recombinant adeno-associated virus serotype 2 (AAV2) encoded the photosensitive protein of KillerRed triggered by lactate in tumour microenvironment \textit{in vivo}.4 Also, we show that AAV2 chemically conjugated with iron oxide nanoparticles (~5 nm) have remarkable ability to be remotely guided under magnetic field.5 Transduction is achieved with micro-scale precision. Furthermore, the KillerRed was enabled localized PDT; or light-triggered virotherapy. Otherwise, our approach has achieved a chemo drug (doxorubicin, DOX) resistant human breast adenocarcinoma MCF-7 (CDR-MCF-7) cell line for PDT.6 These proof-of-principles demonstrate guided and highly localized micro-scale, light-triggered virotherapy.